Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. dent. j ; 32(3): 44-55, May-June 2021. tab, graf
Article in English | LILACS, BBO | ID: biblio-1345505

ABSTRACT

Abstract In the RLT (Rapid Layer Technology), veneering ceramic and framework are fabricated by computer-aided design/computer-aided manufacturing (CAD/CAM) and then cemented to obtain the restoration. This study aimed to evaluate the effect of the thickness of veneering ceramic manufactured by the RLT technique on the fracture resistance (FR) of bilayer crowns with zirconia frameworks. Twenty zirconia frameworks and twenty feldspathic posterior crowns with two different veneering ceramic occlusal thicknesses (1mm=TF1; 2mm=TF2) were manufactured using CAD/CAM system. The specimens were luted to an epoxy resin abutment with resin cement and mechanically cycled (200N and 4.5×105 Pa, 37°C, 2×106 cycles, 3Hz). The FR test was performed (10kN, 0.5mm/min), and the specimens were analyzed in a stereomicroscope. For the stress analysis (finite element analysis, FEA), a 10kN load was equal to the in vitro test, and the principal stress was evaluated. The FR data were analyzed by Student's t-test and Weibull's analysis. The thickness influenced the FR of bilayer crowns. The FR was higher in the TF2 than in the TF1 group. The TF2 group presented the highest characteristic strength compared to the group TF1. The predominant type of failure was delamination. The FEA showed higher stress concentrations below the loading application point at the veneering cement interface in the 1-mm-thick model. The bilayer crowns manufactured using the approach of 2mm of veneering ceramic promoted higher FR compared to the group with 1mm veneering ceramic. Also, the FEA showed that the veneer ceramic thickness has an effect on stress distribution in zirconia-based bilayer crowns.


Resumo Na RLT (Rapid Layer Technology), a cerâmica de cobertura e infraestrutura são fabricados pelo Computer-Aided Design / Computer-Aided Manufacturing (CAD / CAM) e cimentados para obter a restauração. Este estudo teve como objetivo avaliar o efeito da espessura da cerâmica de cobertura fabricada pela técnica RLT na resistência à fratura (RF) de coroas bilaminadas com infraestrutura de zircônia. Vinte infraestruturas de zircônia e vinte coroas posteriores feldspáticas com duas espessuras oclusais da cerâmica de cobertura (1mm = TF1; 2mm = TF2) foram fabricadas usando o sistema CAD / CAM. Os espécimes foram cimentados em preparos de resina epóxi com cimento resinoso dual e ciclados mecanicamente (200N e 4,5×105 Pa, 37° C, 2×106 ciclos, 3Hz). O teste de RF foi realizado (10kN, 0,5mm / min) e, posteriormente, os espécimes foram analisados em estereomicroscópio. Para a análise de tensão (análise de elementos finitos, FEA), uma carga de 10kN foi aplicada igual ao teste in vitro, e a tensão principal foi avaliada. Os dados de RF foram analisados pelo teste t de Student e análise de Weibull. A espessura mostrou forte influência na RF das coroas bilaminadas. A RF foi maior em TF2 do que no grupo TF1. O grupo TF2 apresentou a maior resistência característica em relação ao grupo TF1. O tipo de falha predominante foi a delaminação. O FEA mostrou maiores concentrações de tensões abaixo do ponto de aplicação da carga, na interface cimento e cerâmica de cobertura no modelo de coroa de 1 mm de espessura. As coroas de bilaminadas confeccionadas com 2 mm de cerâmica de cobertura promoveram maior RF em comparação ao grupo com cerâmica de cobertura de 1 mm. Além disso, a FEA mostrou que a espessura da cerâmica de cobertura tem um efeito na distribuição de tensões em coroas bilaminadas à base de zircônia.


Subject(s)
Humans , Dental Porcelain , Dental Veneers , Technology , Zirconium , Materials Testing , Ceramics , Computer-Aided Design , Dental Restoration Failure , Crowns , Dental Stress Analysis
2.
J. appl. oral sci ; 28: e20200122, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1143143

ABSTRACT

Abstract This paper aims to evaluate the effect of different surface treatments on surface topography, wettability, and shear bond strength of resin cement to glass ceramic. Methodology: For SBS test, 32 blocks (7x7x2 mm) of lithium disilicate were obtained and randomly divided into eight groups (four blocks per group) according to each surface treatment (HF 20 s, 60 s, 120 s + silanization/S or Scotch Bond Universal/ SBU) and the Monobond Etch & Prime - MEP application followed or not by SBU. On each treated surface ceramic block, up to four dual-curing resin cement cylinders were prepared and light-cured for 40s (N=120/n=15). The specimens were thermocycled (10,000 cycles, 5-55°C, 30 s) and the SBS test (50KgF, 0.5 mm/min) was performed. Furthermore, failure analysis, wettability, AFM, and SEM were carried out. SBS data (MPa) were analyzed using Student's t-test, two-way ANOVA, Tukey's test (5%) and Weibull's analysis. Results: For HF experimental groups, two-way ANOVA presented the factors "etching time" and "bonding agent" as significant (p<0.05). After silane application, the HF groups presented similar bond strength. SBU application compromised the SBS, except for 120s etching time (HF120sS: 23.39ᵃ±6.48 MPa; HF120sSBU: 18.76ᵃ±8.81MPa). For MEP groups, SBU application did not significantly affect the results (p=0.41). The MEP group presented the highest Weibull modulus (4.08A) and they were statistically different exclusively from the HF20sSBU (0.58B). Conclusion: The HF 20s, 60s, 120 s followed by silane, promoted similar resin-bond strength to ceramic and the SBU application after HF or MEP did not increase the SBS.


Subject(s)
Ceramics , Dental Bonding , Wettability , Dental Porcelain , Silanes , Surface Properties , Materials Testing , Resin Cements , Dental Cements
3.
Braz. oral res. (Online) ; 34: e018, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089390

ABSTRACT

Abstract The objective of this study was to evaluate the influence of hydrofluoric acid (HF) concentration, etching time, and application of phosphoric acid (PA) followed by neutralization with sodium bicarbonate on the bond strength between a feldspar ceramic and resin cement. Thus, 80 blocks (10 x 12 x 2 mm) of glass ceramic (VM - Vita Mark II - Vita Zahnfabrik) were made and randomly assigned to eight groups (n = 10) according to the factors: HF concentration (5 and 10%), etching time (60 and 120 s), and use of phosphoric acid (PA) (with and without). According to the experimental group, 37% PA (Condac, FGM) was applied after HF etching for 60s. Afterwards, samples were immersed in sodium bicarbonate for 1 min then in an ultrasonic bath in distilled water (5 min) for cleaning. After surface bonding treatment, cylinders (Ø = 2 mm; h = 2 mm) of dual resin cement (AllCem / FGM) were made in the center of each block. The samples were then stored in water (37ºC) for 90 days and submitted to the shear bond test (50 KgF, 1 mm/min). Failure analysis was performed by stereomicroscope and scanning electron microscopy. Data (MPa) were analyzed with 3-way ANOVA and Tukey's test. Only the factor "HF concentration" was significant (p = 0.02). Most failures were of cohesive in ceramic (40%) and mixed types (42.5%). The 10% HF resulted in higher shear bond strength value than the 5% HF. Surface cleaning with phosphoric acid followed by sodium bicarbonate and HF time (60 or 120 seconds) did not influence the resin bond strength to feldspar ceramic.


Subject(s)
Phosphoric Acids/chemistry , Dental Bonding/methods , Potassium Compounds/chemistry , Aluminum Silicates/chemistry , Hydrofluoric Acid/chemistry , Reference Values , Silanes/chemistry , Surface Properties , Time Factors , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Analysis of Variance , Resin Cements/chemistry , Shear Strength/drug effects , Dental Porcelain/chemistry , Methacrylates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL